
CMPE - 310
Lecture 17 – OS Essentials

Outline

Processes and Tasks

Memory Management

Virtual Memory and Paging

TLBs (Translation Lookaside Buffers)

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Processes and Tasks
What comprises the state of a running program (a process or task)?

If a second process, P2, is to be created and run (not shown), then the state of P1 must be
saved so it can be later resumed with no side-effects.

Since only one copy of the registers exist, they must be saved in memory.
We'll see there is hardware support for doing this on the Pentium later.

DRAM

Data bus

Control

P1 stack

P1 Code

P1 Data

P1’s state

OS code
and data

Microprocessor Address bus

special caches
code/data cache

EAXEBP EIP DS
EBX ESP EFlags ES
ECX EDI ... FS
EDX ESI CS SS GS

The STATE of a task or process is given
by the register values, OS data structures,
and the process’s data and stack segments.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Memory Hierarchy

For now, let's focus on the organization and management of memory.

Ideally, programmers would like a fast, infinitely large nonvolatile memory.

In reality, computers have a memory hierarchy:
Cache (SRAMS): Small (KBytes), expensive, volatile and very fast (< 5ns).
Main Memory (DRAM): Larger (MBytes), medium-priced, volatile and medium-
speed (<80ns).

Disk: GBytes, low-priced, non-volatile and slow (ms).

Therefore, the OS is charged with managing these limited resources and creating the illu-
sion of a fast, infinitely large main memory.

The Memory Manager portion of the OS:
• Tracks memory usage.
• Allocates/Deallocates memory.
• Implements virtual memory.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Advantage: it's simple to implement.
However, it utilizes memory poorly. Also, in time sharing systems, queueing up jobs in this
manner leads to unacceptable response time for user processes.

Partition 4

Partition 3

Partition 2

Partition 1

OS

Simple Memory Management

In a multiprogramming environment, a simple memory management scheme is to divide up
memory into n (possibly unequal) fixed-sized partitions.

These partitions are defined at system start-up and can be used to store all the segments of
the process (e.g., code, data and stack).

Multiple
Job Queues

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Variable-Sized Partitions
In a variable-sized partition scheme, the number, location and size of memory partitions
vary dynamically:

(1) Initially, process A is in memory.
(2) Then B and C are created.
(3) A terminates.
(4) D is created, B terminates.

A

OS

C

B

A

OS

C

B

OS

C

D
OS

X1

C

B

X2

D
OS

(1) (2) (3)
Time

(4) (5)

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

code

OS

Variable-Sized Partitions

Problem: Dynamic partition size improves memory utilization but complicates allocation
and deallocation by creating holes (external fragmentation).

This may prevent a process from running that could otherwise run if the holes were
merged, e.g., combining X1 and X2 in previous slide.

Memory compaction is a solution but is rarely used because of the CPU time involved.
Also, the size of a process's data segments can change dynamically, e.g. malloc().

If a process does not have room to grow, it needs to be moved or killed.
stack

data

Growth

Other
Processes

Process
A

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Implementing Memory on the Hard Drive

The hard disk can be used to allow more processes to run than would normally fit in main
memory.

For example, when a process blocks for I/O (e.g. keyboard input), it can be swapped out to
disk, allowing other processes to run.

The movement of whole processes to and from disk is called swapping.

The disk can be used to implement a second scheme, virtual memory.
Virtual memory allows processes to run even when their total size (code, data and
stack) exceeds the amount of physical memory (installed DRAM).

This is very common, for example, in microprocessors with 32-bit address spaces.

If an OS supports virtual memory, it allows for the execution of processes that are only
partially present in main memory.

OS keeps the parts of the process that are currently in use in main memory and the rest
of the process on disk.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Virtual Memory
When a new portion of the process is needed, the OS swaps out older 'not recently used '
memory to disk.

Virtual memory also works in a multiprogrammed system.
■ Main memory stores bits and pieces of many processes.
■ A process blocks whenever it requires a portion of itself that is on disk, much in

the same way it blocks to do I/O.
■ The OS schedules another process to run until the referenced portion is fetched

from disk.

But swapping out portions of memory that vary in size is not efficient.
External fragmentation is still a problem (it reduces memory utilization).

Two concepts:
• Segmentation: Allows the OS to 'share' code and enforce meaningful constraints on

the memory used by a process, e.g. no execution of data.
• Paging: Allows the OS to efficiently manage physical memory, and makes it easier to

implement virtual memory.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Paging and Virtual Memory
So how does paging work?

We will refer to addresses which appear on the address bus of main memory as a physical
addresses.

Processes generate virtual addresses, e.g., MOV EAX, [EBX]
Note, the value given in [EBX] can reference memory locations that exceed the size of
physical memory.

(We can also start with linear addresses, which are virtual addresses translated
through the segmentation system, to be discussed).

All virtual (or linear) addresses are sent to the Memory Management Unit (MMU) for
translation to a physical address.

CPU chip

MMU

CPU
CPU sends
virtual address
to MMU

MMU translates
address and sends
physical address to Memory
memory

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Paging and Virtual Memory
The virtual (and physical) address space is divided into pages.

Page size is architecture dependent but usually range between 512- 64K.
Corresponding units in physical memory are called page frames.

Pages and page frames are usually the same size.

8K-12K

0K-4K

60K-64K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K

Virtual address space

Page Frames

Virtual pages
X
X
X
7
X
5
X
X
X
3
4
0
6
1
2

X

Physical
address
space

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

20500 is translated to physical 4K-8K
address 12K + 20 = 12308.

Assume:
Page size is 4K.
Physical mem is 32K.
Virtual mem is 64K.

Therefore, there are
16 virtual pages.
8 page frames.

Assume the process issues
the virtual address 0:
Paging translates it to

physical address 8192
using the layout on right.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Paging and Virtual Memory
Note that 8 virtual pages are not mapped into physical memory (indicated by an X on the
previous slide).

A present/absent bit in the hardware indicates which virtual pages are mapped into physical
RAM and which ones are not (out on disk).

What happens when a process issues an address to an unmapped page?
• MMU notes page is unmapped using present/absent bit.
• MMU causes CPU to trap to OS - page fault.
• OS selects a page frame to replace and saves its current contents to disk.
• OS fetches the page referenced and places it into the freed page frame.
• OS changes the mem map and restarts the instruction that caused the trap.

Paging allows the physical address space of a process to be noncontiguous !
This solves the external fragmentation problem (since any set of pages can be chosen
as the address space of the process).

However, it generally doesn't allow 100% mem utilization, since the last page of a
process may not be entirely used (internal fragmentation).

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Paging and Virtual Memory
Addresses Translation by the MMU

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

000 0
000 0
000 0
000 0
111 1
000 0
101 1
000 0
000 0
000 0
011 1
100 1
000 1
110 1
001 1
010 1

Physical Address
110 000000000100

Virtual Address
0010 000000000100

PhysicalAddress
15 bits = 32K

Process generates

BUS

Virtual
Page
Number

Offset

Page
Frame
Number

Offset

Page Table: Maps virtual pages onto
page frames.

Virtual Address
16 bits = 64K

For example:
8196 in binary is

present/
absent

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Paging and Virtual Memory
Two important issues w.r.t the Page Table:
• Size:

The Pentium uses 32-bit virtual addresses.
With a 4K page size, a 32-bit address space has 232/212 = 220 or 1,048,576 virtual page
numbers !

If each page table entry occupies 4 bytes, that's 4MB of memory, just to storethe
page table.

For 64-bit machines, there are 252 virtual page numbers !!!

• Performance:
The mapping from virtual-to-physical addresses must be done for EVERY memory ref-
erence.

Every instruction fetch requires a memory reference.
Many instructions have a memory operand.

Therefore, the mapping must be extremely fast, a couple nanoseconds, otherwise it
becomes the bottleneck.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Page Table Design Alternatives

• Single page table stored in an array of fast hardware registers.
OS loads registers from memory when a process is started.
■ Advantage: No memory references are needed for the page table.
■ Disadvantage: Context switches require the entire page table to be

loaded. If it is large, this will be expensive.

• Page table kept entirely in main memory.
Single register points to the start of the page table.
■ Advantage: Context switches only require updating the register pointer.
■ Disadvantage: One or more memory references are needed to read page table

entries for each instruction.

Modern computers keep 'frequently used' page table entries on chip in a cache (similar to
first alternative above) and the others in main memory (similar to the second alternative).

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Multilevel Page Tables

Instead of using only one level of indirection, use two.

0
1
2
3
4

6
5

1023

10 10 12
431

Number of Bits

0
1
2
3
4
6
5

1023

0
1
2
3
4
6
5

1023
Pages

Second-level
page tables

Top-level page table

0x00054

4K
Page
Frames

32-bit virtual address
0x00403004

BaseAddress
0x00054000

0x00312 Base
Address
of desired
page.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Multilevel Page Tables

This addresses page table size problem since many of the second-level page tables need not
be defined (and therefore stored in main memory).

Note that two page faults can occur for a single memory reference.
If the second-level page table is not in memory, a page fault occurs.
If the page that the second-level entry refers to is not in memory, another page fault
occurs.

In general, Page Frames are machine dependent with the following info:
Modified Present/absent bit

Referenced Protection bits
■Page Frame address: Most significant bits of physical memory address.
■Present/Absent bit: If 1, page is in memory, if 0, it is on disk.
■Modified bit: If set, page has been written to, e.g. it is "dirty".
■Referenced bit: Used in the OS page replacement algorithm.
■Protection bits: Specifies if data in page can be read/written/executed.

Other info Page Frame Address

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Translation Lookaside Buffers (TLBs)

With two-level paging, one memory reference could require three memory accesses !

In order to reduce the number of times this occurs, a fast lookup table called a TLB is added
as a hardware cache in the microprocessor.

CPU
virtual address
Page #Offset

TLB

Page # Page frame

TLB miss

hit
3

6
5
4
3
2
1
0 physical

Page Table memory

physicalpage
frame Offset address

140 31

TLB 102
20 38
130 22
129 14
19 100
21 56
860 33
key value

Page #
compared
to all keys
simultaneously

If found,
- TLB hit -
no memory
access required

If not, TLB miss

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Translation Lookaside Buffers (TLBs)

Number of TLB entries varies from 8 to 2048.
Typically around 64.

When a TLB miss occurs:
• A trap occurs and an OS routine handles the fault. The instruction is then restarted.
• The OS routine copies one (or more) page frame(s) from the page table in memory to

one (or more) of the TLB entries.

Therefore, if page is referenced again soon, a TLB hit occurs eliminating the memory refer-
ence for the page frame.

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

	CMPE - 310
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

