
CMPE-310
Lecture-03: 8086 Architecture

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Outline

8086 Architecture- Block diagram

Internal programmer visible registers

Memory segmentations

Real Mode Addressing
Real Mode Memory: 00000H-FFFFFH (the first 1MB of main memory).

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Problem Statement

8085 processes sequential instructions.
No concept of parallel processing.

Slow processing, increasing chip frequency was the solution.
Processor was stalled between two instructions fetch.

Fetch 1 Exec 1 Fetch 2 Exec 2

Non-pipelined 8085

time

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Solution
Two ways to make CPU process information faster

Increase the working frequency -- technology dependent
Change CPU internal architecture

Pipeline is to allow the CPU to fetch and execute the instructions same time.
Non-pipelined 8085

Fetch 1 Exec 1

Pipelined 8086

Fetch 2 Exec 2

Fetch 3 Exec 3

time

Fetch 1 Exec 1 Fetch 2 Exec 2

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Solution

Intel implemented the concept of pipelining by splitting the internal structure of 8086/8088
microprocessors into two sections that work simultaneously.

Execution Unit (EU)- Executes instructions previously fetched
Bus Interface Unit (BIU)- Fetches the instructions, accesses memory and peripherals

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

8086 Architecture

Source: 8086 Family Users Manual, Page 4-4 Image source: Wikimedia commons

Registers ALU

Instructions Queue

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible registers

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible registers

General Purpose Registers

EAX: Accumulator Referenced as EAX, AX, AL or AH.
Used for mul., div., etc.
Used to hold an offset.

EBX: Base Index
Used to hold the offset of a data pointer.

ECX: Count
Used to hold the count for some instructions, REP and LOOP.
Used to hold the offset of a data pointer.

EDX: Data
Used to hold a portion of the result for mul., of the operand for div.
Used to hold the offset of a data pointer.

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible registers

General Purpose Registers:

ESI: Source Index
Holds the base source pointer for string instructions.

EBP: Base Pointer
Holds the base pointer for memory data transfers.

EDI: Destination Index
Holds the base destination pointer for string instructions.

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible registers

Special Purpose Registers:

EIP: Instruction Pointer:
Points to the next instruction in a code segment.
16-bits (IP) in real mode and 32-bits in protected mode.

ESP: Stack Pointer:
Used by the stack, call and return instructions.

EFLAGS:
Store the state of various conditions in the microprocessor.

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible register - EFLAG

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible register - EFLAG

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible register - EFLAG

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible register - EFLAG

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Memory Segmentation

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible registers

Segment Registers:
CS (Code Segment):

In real mode, this specifies the start of a 64KB memory segment.
In protected mode, it selects a descriptor.
The code segment is limited to 64KB in the 8086-80286 and 4 GB in the 386 and above.

DS (Data Segment):
Similar to the CS except this segment holds data.

ES (Extra Segment):
Data segment used by some string instructions to hold destination data.

SS (Stack Segment):
Similar to the CS except this segment holds the stack.
ESP and EBP hold offsets into this segment.

FS and GS: 80386 and up.
Allows two additional memory segments to be defined.

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Real Mode Memory Addressing
Only mode available to the 8086 and 8088.
Allow the processor to address only the first 1MB of memory.
DOS requires real mode.

Segments and Offsets
Physical Address (PA)= Segment start address * 16 + offset address

Adapted from lecture notes by Dr Chintan Patel and Avani Dave

Programmer visible registers
Segment registers and offset:

Syntax is usually given as seg_addr:offset, e.g. 1000:F000 in the previous example to specify 1F000H.

Implicit combinations of segment registers and offsets are defined for memory references.

For example, the code segment (CS) is always used with the instruction pointer (IP for real mode or EIP for
protected mode).

CS:EIP
SS:ESP, SS:EBP
DS:EAX, DS:EBX, DS:ECX, DS:EDX, DS:EDI, DS:ESI, DS:8-bit_literal, DS:32- bit_literal
ES:EDI
FS and GS have no default

It is illegal to place an offset larger than FFFF into the 80386 32-bit registers operating in Real Mode.

	CMPE-310
	Outline
	Problem Statement
	Solution
	Solution
	8086 Architecture
	Programmer visible registers
	Programmer visible registers
	Programmer visible registers
	Programmer visible registers
	Programmer visible register - EFLAG
	Programmer visible register - EFLAG
	Programmer visible register - EFLAG
	Programmer visible register - EFLAG
	Memory Segmentation
	Programmer visible registers
	Real Mode Memory Addressing
	Programmer visible registers

