
CMPE - 310
Lab 06 – Floating Point Coprocessor (80x87)

2

Outline

Floating Point Coprocessor Basics

Floating Point Coprocessor Status And Control Registers

Floating Point Coprocessor Instructions

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Basics

The 80x87 is able to multiply, divide, add, subtract, find the sqrt and calculate transcenden-
tal functions and logarithms.

Data types include 16-, 32- and 64-bit signed integers; 18-digit BCD data; and 32-, 64- and
80-bit (extended precision) floating-point numbers.

The directives dw, dd and dq are used for declaring signed integer storage while dd, dq
and dt are used for floating-point.

3Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Basics

The 80x87 is able to multiply, divide, add, subtract, find the sqrt and calculate transcenden-
tal functions and logarithms.

Data types include 16-, 32- and 64-bit signed integers; 18-digit BCD data; and 32-, 64- and
80-bit (extended precision) floating-point numbers.

The directives dw, dd and dq are used for declaring signed integer storage while dd, dq
and dt are used for floating-point.

4Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Basics

The 80x87 is able to multiply, divide, add, subtract, find the sqrt and calculate transcenden-
tal functions and logarithms.

Data types include 16-, 32- and 64-bit signed integers; 18-digit BCD data; and 32-, 64- and
80-bit (extended precision) floating-point numbers.

The directives dw, dd and dq are used for declaring signed integer storage while dd, dq
and dt are used for floating-point.

5Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Instruction Operand Comment

dd 0x12345678 ; 0x78 0x56 0x34 0x12

dd 1.234567E+20 ; floating-point constant

dq 0x123456789abcdef0 ; eight byte constant

dq 1.234567E+20 ; double-precision float

dt 1.234567E+20 ; extended-precision float

Coprocessor Basics

Converting from decimal to floating-point is accomplished:
■Convert the decimal number into binary.
■Normalize the binary number.
■Calculate the biased exponent.
■Store the number in the floating-point format.

100.25 = 1100100.01
1100100.01 = 1.10010001 x 26
110 + 01111111 = 10000101
Sign = 0; Exponent = 10000101;
Significand = 10010001000000000000000

Bias is 0x7F, 0x3FF and 0x3FFF for the 3 floating-point number types.

6Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Basics

Converting from floating-point to decimal is accomplished:

O Separate the sign-bit, biased exponent, and significand.
O Convert the biased exponent into a true exponent by subtracting the bias.
O Write the number as a normalized binary number.
O Convert it to a de-normalized binary number.
O Convert the de-normalized binary number to decimal.

Sign = 1; Exponent = 10000011;
Significand = 10010010000000000000000
100 = 10000011 - 01111111
1.1001001 x 24

11001.001
-25.125

7Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Basics

Special Rules:
O The number 0 is stored as all 0s (except for the sign bit).
O +/- infinity is stored as logic 1s in the exponent, with a significand of all 0s. Sign bit is

used to represent +/- infinity.
O A NAN (not-a-number) is an invalid floating-point result that has all 1s in theexponent

with a significand that is NOT all zeros.

8Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Basics
The 80x87 executes 68 different instructions.
Basic structure of the co-processor.

data
buffer

Control Reg
Status Reg

bus tracking
Exceptions

Exponent
module

Instruction
decoder

Operand
queue

Shifter

Arith.
module

Temporary
Registers

(7)
(6)
(5)
(4)

80-bit wide stack

Control Unit
Numeric
Execution
Unit

Ta
g

R
eg

is
te

r
(3) Note: Thesenumbers

are always relative to
(2) the StackTop
(1)
(0)

9Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Status Register

The registers in the coprocessor stack always contain 80-bit extended precision data.
Memory data, of course, can assume other representations. Therefore, conversions
occur during transfers.

Status register:

10Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

During Store Operations
C1 = 0 (stack underflow)

During Load Operations
C1 = 1 (stack overflow)

B C3 Stack Top C2 C1 C0 ES SF PE UE OE ZE DE IE

Coprocessor Status Register

The registers in the coprocessor stack always contain 80-bit extended precision data.
Memory data, of course, can assume other representations. Therefore, conversions
occur during transfers.

Status register:

Divide by 0.
Overflow

FSTSW AX (Floating-point STore Status Word).
An instruction that transfers data between the coprocessor and the AX register.

Error conditions can be checked in your program by examining bits of this status word.
You can use the TEST instruction to test bits or the SAHF instruction to transfer the
left-most 8 bits to the EFLAGs register.

11Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Status/Control Register

This register selects precision, rounding control and infinity control.
For example, a value of 00 for P and C sets single precision mode.
R and C control rounding, e.g. round down, up or truncate toward 0.

;Copy status reg to AX
;Test bit position 2

For example:
fdiv DATA1
fstsw ax
test ax, 4
jnz DIVIDE_ERROR

fcom DATA1
fstsw ax
sahf
je ST_EQUAL
jb ST_BELOW
ja ST_ABOVE

Control Register:

;Compare DATA1 to ST0 and set status.

;Copy status bits to flags.

IC R C P C PM UM OM ZM DM IM

12Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Instruction Set

Data Transfer Instructions:
O FLD (Load Real)

Loads floating-point data to Stack Top (ST). Stack pointer is then decremented by 1.
Data can be retrieved from memory, or another stack position.

13

Note that ST is register 0 after initialization.
O FST (Store Real), FSTP (Store Real and Pop)

Stores a copy of the top of the stack (and pop for FSTP) into memory or another
coprocessor register.

Rounding occurs when the storage operation completes according to the control register.

Exchanges register given as operand with ST.
O FCMOV (Conditional floating point MOV)

fld st2 ;Copies contents of register two to ST.

fst dword [eax]

O FXCH (Exchange)

;Pop contents of FP stack to [eax]

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Stack addressing mode is restricted to use ST (stack top) and ST1.
The source operand is ST while the destination operand is ST1.
After the operation, the source is popped, leaving the dest. at ST.

14

Coprocessor Instruction Set
Integer Data Transfer Instructions:
O FILD (load integer)
O FIST (Store integer)
O FISTP (Store integer and pop)
Similar to FLD, FST and FSTP except they transfer (and convert) integer.

fild dword [numpoints] ;Load and convert integer to FP stack.

Arithmetic Instructions:
Addressing modes:

Mode Form Example
Stack st1, st faddp
Register st, stn fadd st, st2

stn, st fadd st2, st
Register Pop stn, st faddp st3, st
Memory Operand fadd [DATA2]

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Instruction Set

Arithmetic Instructions (cont):
Note that FSUB subtracts ST from ST1, e.g., ST = ST1 - ST.

Use FSUBR to reverse the order.

For example, to compute the reciprocal (1/X):

15

Register addressing mode MUST use ST as one of the operands.
The other operand can be any register, including ST0 which is ST.
Note that the destination can be either ST or STn.
Also, unlike stack addressing, non-popping versions can be used.

Memory addressing mode always uses ST as the destination.

;Load X.
;Load 1.0 to st
;Compute 1/X and save at st.

fld x
fld1
fdivr

Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Instruction Set

Arithmetic Instructions (cont):
The following letters are used to additionally qualify the operation:
O P: Perform a register pop after the operation, FADD and FADDP.
OR: Reverse mode for subtraction and division.
O I : Indicates that the memory operand is an integer. I appears as the second letter in the

instruction, e.g., FIADD, FISUB, FIMUL, FIDIV.

Arithmetic Related Instructions:

O FSQRT: Finds the square root of operand at ST. Leave result there. Check IE bit for an
invalid result, e.g., the operand was negative using FSTSW AX, and TEST AX, 1.

O FSCALE: Adds contents of ST1 (interpreted as an integer) to the exponent of ST.
O FPREM1: Performs modulo division of ST by ST1. The resultant remainder is found at ST.
O FRNDINT: Rounds ST to an integer.

16Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Instruction Set
Arithmetic Related Instructions (cont):
O FXTRACT: Decomposes ST into an unbiased exponent and a significand. Extracted

significand is at ST and unbiased exponent at ST1.
O FABS: Change sign of ST to positive.
O FCHS: Invert sign of ST.

Comparison Instructions:
These instructions examine ST in relation to another element and return result of the
comparison in the status register bits C3-C0.

O FCOM: Compares ST with an memory or register operand. FCOM by itself compares
ST and ST1.

O FCOMP/FCOMPP: Compare and pop once or twice.
O FICOM/FICOMP: Compare ST with integer memory operand and optionally pop the

stack.
O FTST: Compare ST with 0.0.
O FXAM: Exam ST and modify CC bits to indicate whether contents are positive,

negative, normalized, etc. (See text).
O FCOMI/FUCOMI: Combines FCOM, FNSTSW AX, and SAHF.

17Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Instruction Set
Transcendental Operations: (See text for semantics).
O FPTAN
O FPATAN
O F2XM1: Compute 2x -1
O FSIN/FCOS
O FSINCOS
O FYL2X: Compute Ylog2X
O FYL2XP1: Compute Ylog2(X + 1)

Constant Returning Operations:
O FLDZ: Store +0.0 to ST.
O FLD1: Store +1.0 to ST.
O FLDPI: Store pi to ST.
O FLDL2T: Store log210 to ST.
O FLDL2E: Store log2e to ST.
O FLDLG2: Store log102 to ST.
O FLDLN2: Store loge2 to ST.

18Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

Coprocessor Instruction Set

Coprocessor Control Instructions:
O FINIT/FNINIT: Reset coprocessor with or without waiting afterwards.
O FWAIT: Stops microprocessor until coprocessor has finished an operation. Should be

used before the microprocessor accesses memory data that are affected by the
coprocessor.

Instruction reference is given in text along with examples.

19Adapted from slides prepared by Dr. Chintan Patel for CMPE 310

	CMPE - 310
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

