
CMPE 310
Lab 5 - Processing Integers

Outline

• NASM Review
○ What is a Stack Frame/ Call Frame?
○ Macros

● Homework 3
○ Homework 3 Description
○ Input File Format
○ C-Functions
○ GetCommandLine
○ mine.inc

What is a Stack Frame/ Call Frame?

Stack Frame is used to protect data pushed into the stack
move EBP to ESP.
Prevents POPing.

Can reach data stored in a stack frame by dereferencing EBP with an offset.

Parameter1
Parameter1
Parameter3

Return Address
EBP
Local Var 1
Local Var 2
Local Var 3
EBX
ECX
EDX

Parameter1
Parameter1
Parameter3
Parameter4

Return Address
EBP
ECX
EBX

Parameters
passed

Parameters
passed

Procedure
Call 1

}
} Local

variables

} Registers
saved

Registers
saved

Procedure
Call 2

(no local variables)

Call Frames

One call frame created per procedure call

STACK

EBP

ESP

}
}

Setting up Call Frames

GetCommandLine:
Enter 0
Push_Regs ebx, ecx, edx

%macro Enter 1
push ebp
mov ebp, esp
sub esp, %1

%endmacro

(1)
(2)

Move ESP into EBP
i.e. EBP points to the pushed EBP

Allocate space for local variables
(none in this example)

(1) Push EBP

EBP

ESP(2) Push the registers that are to be saved
EBX, ECX and EDX in this example

00000010

Return Address

EBP

EBX

ECX

EDX

}

Procedure Calls (Steps Recap)

Caller: Before Call
■Save registers that are needed (for C functions save EAX, ECX, EDX)
■Push arguments, last first
■CALL the function

Callee:
■Save caller's EBP and set up callee stack frame (ENTER macro)
■Allocate space for local variables and temporary storage
■Save registers as needed (C functions save EBX, ESI, EDI)
■Perform the task
■Store return value in EAX
■Restore registers (C functions restore EBX, ESI, EDI)
■Restore caller's stack frame (LEAVE macro)
■Return

Caller: After Return
■POP arguments, get return value in EAX, restore registers (for C EAX, ECX, EDX)

Single-line Macros:
%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))

Can be used as:

;Definitions

mov byte [param(2,ebx)], ctrl ‘D’

Which expands to:
mov byte [(2)+(2)*(ebx)], 0x1F & ‘D’

Note that expansion occurs at invocation time, not at definition time, e.g.
;b(x) used before it is
;defined here.

%define a(x) 1+b(x)
%define b(x) 2*x

Used as:
mov ax, a(8)

Expands to:
mov ax, 1+2*8

Macros

;Single arg definition
;Double arg definition

Overloading macros is allowed.
%define foo(x) 1+x
%define foo(x,y) 1+x*y

Undefining macros:
%undef foo

Multi-line Macros:
%macro prologue 1

push ebp
mov ebp, esp
sub esp, %1

%endmacro
And use as:

myfunc: prologue 12

Expands to:
myfunc: push ebp

mov ebp, esp
sub esp, 12

Macros

%%endstr: mov dx, %%str ;each time the macro is
mov cx, %%endstr-%%str ;invoked.
mov bx, %1
mov ah, 0x40
int 0x21

%%endmacro
And the call:

%ifdef DEBUG
writefile 2, “I'm here”, 13, 10

%endif
Using the command-line option -dDEBUG, expands the macro otherwise it is left out
(similar to C).

Note that “I'm here”, 13, 10 is substituted in for %2 in the above code.

Conditional assembly:
Given the macro (21h is a DOS interrupt):

%macro writefile 2+
jmp %%endstr

%%str: db %2

;Greedy macro params
;%% defines macro-local
;labels which are different

Macros

Homework 3 Description

- Read in a set of integers from an input file to a memory array.
- The first line of the input file will contain the number of integers in the file.
- There will be a maximum of 1000 integers in the input file (so a maximum of 1001 lines).
- The input file name is to be read from the command line (use the GetCommandLine

function that we are providing).
- Use the C-functions fopen and fscanf to open and read from the input file.

- Compute the sum of the integers that you have read in and print the sum to the terminal.
- Just like in the last lab, we will use printf for printing integers to the terminal.

- Sort the array and print the sorted contents in descending order.

Input File Format
Example of an input file that you would use to test your
homework 3 as well as the corresponding output (shown
here in ascending order):

It wouldn’t be a bad idea to use a higher level language
that you are more comfortable with to generate large
input test files.

C-Functions

printf
C library function that sends formatted output to stdout.
To use printf, you must have the line “extern printf” somewhere in your program.
The “%d” in your output string tells printf where to place the data that you have passed it
and how to format it (decimal in this case).

The value 10 at the end of the message
represents the new line character.

The value 0 represents the null character.

The assembly code on the right in C
would look something like:

printf(“The integer is: %d”, 310)

C-Functions
fopen

C library function that opens or creates the file given by filename using the given mode.
Must include “extern fopen” in your program.

The “mode” here is the file access mode.
The “filename” in the example to the right is the
address where our “output.txt” string is stored.

For this assignment we are getting the filename from
the command line (using GetCommandLine).
GetCommandLine will place the address of the
input file into the filename variable, so

push dword filename
The assembly code on the right in C would look something like:

fopen(“output.txt”, “w”)

C-Functions

fopen continued
After calling fopen, a file pointer is returned in eax.

This file pointer is what you will be using in fscanf.

If there was an error with the fopen call, NULL will be returned in eax.

C-Functions

fscanf
C library function that reads formatted input from a stream (our input file in this case).

The “stream” is the file pointer that we get from fopen.

The “format” here tells fscanf how to interpret each line (decimal, character, hex, etc.).

The line that is read in will be stored in the first variable pushed to the stack.

Each consecutive call to fscanf automatically proceeds to the next line of the input file.

C-Functions

fscanf
The example on the right opens a file in read
only mode, performs an error check on

the call to fopen, and reads in the first line
of the input file and stores it in “input_line”.

The code in C would look something like:

file_ptr = fopen(“input.txt”, “r”)
fscanf(file_ptr, “%d”, input_line)

	CMPE 310
	Outline
	What is a Stack Frame/ Call Frame?
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Homework 3 Description
	Input File Format
	C-Functions
	C-Functions
	C-Functions
	C-Functions
	C-Functions

