
CMPE-310
Lab02- Assembly Basics

Outline

• Sample NASM Source Code modified for gcc

• Assembly language basics

• Learn how to debug code

• Debugging Exercises

Hello World modified for gcc
;
; Assemble using NASM
;

section .data
msg db 'Hello, world!',0xA
len equ $ - msg

section .text
global main

main:

mov eax,4
mov ebx,1
mov ecx,msg
mov edx,len
int 0x80

mov eax,1
xor ebx,ebx
int 0x80

; section declaration
; our string
; length of our string

; section declaration
; must be declared for compiler (gcc)

; tell compiler entry point

; system call number (sys_write)
; file descriptor (stdout)
; message to write
; message length
; call kernel

; final exit
; system call number (sys_exit)
; sys_exit return status
; call kernel

Hello World

Produce hello.o object file:

nasm –f elf hello.asm –l hello.lst

Produce hello ELF executable (gcc):

gcc –m32 hello.o -o hello

Run the program:

./hello

Declaring Initialized Data

Data and Constants
DB, DW, DD, DQ and DT are used for initialized data.

db 0x55 ; The byte 0x55
RESB, RESW, RESD, RESQ and REST are used for uninitialized data.

buffer: resb 256 ; Reserve 256 bytes
Constants:

Suffixes H, Q and B are used for hex, octal and binary respectively. 0x also works for hex.

mov eax,0xa2h ; hex
mov eax,0xa2 ; hex
mov eax,777q ; octal
mov eax,10010011b ; binary
mov eax,'abcd’ ; ASCII chars 0x64636261
%define FOO 100 ; Defines numeric and string constants at the top of a file

Memory Addressing

We want to store the value 1734h
The value 1734h may be located in a register or in memory (or cache)
The location in memory might be specified by the code, by a register, ...
Assembly language syntax for mov

mov destination , source

NASM Syntax

In order to refer to the address of a variable, leave them out, e.g.,

mov eax, bar –moves address specified by bar (memory) into eax

In order to refer to the contents of a memory location, use square brackets.

mov eax, [bar] –moves content of bar into eax

NASM does not understand variable types:

data dw 0

mov [data], 2 ; ERROR

mov word [data], 2 ; OK

NASM is case sensitive

System Calls
; final exit to

mov eax, 1 ; standard output (screen/console)
xor ebx, ebx ; first syscall argument: exit code
int 0x80 ; call kernel to take over

System calls for 32-bit linux OS – https://syscalls32.paolostivanin.com

Command: xor
xor ebx, ebx – clears ebx by xoring ebx with itself and storing it back into ebx

–

mov eax,4
mov ebx,1
mov ecx,msg
mov edx,len
int 0x80

; system call number (sys_write)
; file descriptor (stdout)
; message to write
; message length
; call kernel

https://syscalls32.paolostivanin.com/

Debugging Assembly

Cannot just add print statements everywhere (like in higher level languages)

Use gdb to:

Examine the contents of registers

Examine contents of memory set breakpoints

Single-step through program

Setup hello world for disassembly

Produce hello.o object file:

nasm –g –f elf –F dwarf hello.asm –l hello.lst

Produce hello ELF executable (gcc):

gcc –m32 hello.o -o hello

Debug the program:

gdb –tui hello

Exercise problems

Find the respective source codes under Lab Material from course website

1. Assemble and compile ex1.asm for debugging
Insert a breakpoint at line number 23, and run
Use info registers to list the contents of all the registers
Insert a breakpoint at line number 26, and continue
Print the contents of register EAX as a hexadecimal

2. Assemble and compile ex2.asm for debugging
Insert a breakpoint at line number 16
Insert a breakpoint at line number 19, and run
Add register ECX to the display list as a decimal
Continue to the next breakpoint once and watch for changes in ECX
Remove the breakpoint at line number 16, and continue
Step/Continue through the code and determine the final value in ECX before the program exits

Find the respective source codes under Lab Material from course website

3. Assemble and compile ex3.asm for debugging
Insert a breakpoint at line number 31, and run
Examine all the contents of matrix0 as decimals using a single x command
Examine the value in rowlen to verify if it contains the expected value

4. Assemble and compile ex4.asm for debugging
Insert a breakpoint at line number 31, and run
Examine all the contents of text0 as a string using a single x command
Examine the value in rlen and rowlen to verify if they contain expected values

5. Assemble and compile hello.asm for debugging
Using the 32-bit system call table, try to figure out why specific values are transferred into
EAX, EBX, ECX, and EDX registers

Exercise problems

	CMPE-310
	Outline
	Hello World modified for gcc
	Hello World
	Declaring Initialized Data
	Data and Constants
	Memory Addressing
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	NASM Syntax
	System Calls
	Debugging Assembly
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Setup hello world for disassembly
	Exercise problems
	Exercise problems

