
CMPE-310
Lab01- Introduction To NASM

Outline

• Assembly Program Structure

• Learn how to assemble code

• Basic NASM Syntax

• Sample NASM Source Code

Lab policy
NO Sharing Code/Cheating
Some collaboration is okay, too much collaboration is NOT.
We will check your code.

You will upload your code and all home work document reports to submit directory
Class name CMPE_310

More on how to use submit is available from here.
Submit instructions will be posted on the course website.

Do NOT save anything on lab computers (ITE375), files get deleted after powering off.

Lab Grading:
30% Demo, 70% Correctness (Functionality)

https://swe.umbc.edu/%7Edeepakk1/cmpe310/Links/submit_help.pdf

UTA and TA Contact info

UTA:

Nathaniel Sokolow: nsokolo1@umbc.edu

Simon Rupp: srupp1@umbc.edu

TA :

Sravani Varanasi: sravani1@umbc.edu

Structure of an Assembly Language Statement
General structure of an assembly language statement

LABEL: INSTRUCTION ;COMMENT

Label — address identifier for the statement

Instruction — the operation to be performed

Comment — documents the purpose of the statement

Example:
START: mov AX, BX ;Copy the content of BX into AX

Other examples:
INC SI ;Update pointer
ADD AX, BX ;Add the content of BX to AX and store the result in AX

Few instructions have a label — usually marks a jump to point
Not all instructions need a comment

Program memory layout (sections)

Source: http://i.stack.imgur.com/1Yz9K.gif

https://i.stack.imgur.com/1Yz9K.gif

NASM Program Sections

NASM – Netwide assembler
Documentation on NASM is available from here

The data section is used for declaring initialized data or constants.
section .data

msg db "Hello World!", 0xA ; our string terminated by newline
len equ $-msg ; length of our string

; equ defines len to a constant
The bss section is used for declaring variables or uninitialized data.

section .bss
Buffer: resb 256 ; reserve 256 bytes

The text section is used for keeping the actual code.
section .text

your code here

http://www.nasm.us/doc/

NASM Labels

Labels- Give structure to code and provides target for jump instructions
label: instruction operand
● The ':' is optional, which can cause problems if, for example, you misspell an instruction
● Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?.
● Identifier valid starting characters include letters, . , _ and ?.

Local Labels- begin with a '.' and are associated with previous non-local label.

label1 ; some code
.loop ; some more code
jne .loop ; jump to previous loop
ret ; treated as label1.loop

label2 .loop ; some more code
jne .loop ; jump to previous loop

NASM Compilation

To get command line help, type:
nasm -h

To compile into an ELF object file .o, type:
nasm -f elf myfile.asm

To create a listing file, type:
nasm -f elf myfile.asm -l myfile.lst

To send errors to a file, type: (This option is now deprecated)
nasm -E myfile.err -f elf myfile.asm

To include other search paths such as /usr/include, type:
nasm -I/usr/include -f elf myfile.asm

To include other files in a source file, use:
%include "myinc.inc"

Content adapted from Dr. Chintan Patel’s slides

Assembler and the source program

● Assembly language program (.asm) file—known as source code
● Converted to machine code by a process called assembling
● Machine (object) code output by assembler needs to be linked and loaded before execution
● Source listing output in (.lst) file—printed and used during execution and debugging of program

Debugger – GDB (GNU Debugger)
● Permits programs to be assembled and disassembled
● Line-by-line assembly is possible
● Also permits program to be executed and tested

The Listing file

Listing file contents

● Size of code segment and stack
● Names, types, and values of constants and variables
● # lines and symbols used in the program
● # errors that occurred during assembly

nasm-f elf myfile.asm -l myfile.lst

Hello World
;
; Assemble using NASM
;

section .data
msg db 'Hello, world!',0xA
len equ $ -

section .text
global _start

_start:

mov eax,4
mov ebx,1
mov ecx,msg
mov edx,len
int 0x80

mov eax,1
xor ebx,ebx
int 0x80

; section declaration
; our string
; length of our string

; section declaration
; must be declared for linker (ld)

; tell linker entry point

; system call number (sys_write)
; file descriptor (stdout)
; message to write
; message length
; call kernel

; final exit
; system call number (sys_exit)
; sys_exit return status
; call kernel

Hello World

Produce hello.o object file:

nasm –f elf hello.asm –l hello.lst

Produce hello ELF executable (Link and Load):

ld -m elf_i386 -s hello.o -o hello

Run the program:

./hello

	CMPE-310
	Outline
	Lab policy
	UTA and TA Contact info
	Structure of an Assembly Language Statement
	Program memory layout (sections)
	NASM Program Sections
	NASM Labels
	NASM Compilation
	Assembler and the source program
	The Listing file
	Hello World
	Hello World

